Abstract
A hybrid reflectance-based diffuse optical imaging (DOI) technique combining discrete wavelength frequency-domain (FD) near-infrared spectroscopy (NIRS) with broadband continuous wave NIRS measurements was developed to quantify the broadband optical properties of deep tumor-like inclusions. This method was developed to more accurately measure the broadband optical properties of human tumors using a compact handheld imaging probe and without requiring a priori spectral constraints. We simulated the reconstruction of absorption and scattering spectra (650–1000 nm) of human breast tumors in a homogeneous background at depths of 0 to 10 mm. The hybrid DOI technique demonstrated enhanced performance in reconstruction of optical absorption with a mean accuracy over all 71 wavelengths of 8.39% versus 32.26% for a 10 mm deep tumor with the topographic DOI method. The new hybrid technique was also tested and validated on two heterogeneous tissue-simulating phantoms with inclusion depths of 2, 7, and 9 mm. The mean optical absorption accuracy over all wavelengths was similarly improved up to 5x for the hybrid DOI method versus topographic DOI for the deepest inclusions.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献