Abstract
The elimination of poisonous wastes (e.g., heavy metals) from polluted water remains challenging, both in industrialized societies and developing countries. To overcome this human health and environmental issue, biotechnology (e.g., biosorption, bioaccumulation) is being applied as an economic and eco-friendly option compared to physicochemical methods (e.g., adsorption, membrane filtration, and coagulation–flocculation). The development of the appropriate biotechnology process (i.e., bioremediation) requires more accurate information and details, which are possible to obtain through the design of a set of resources and various computer applications. In sustainable remediation, microorganisms are one of the feasible choices for modifying and remaking the natural condition. In this in silico study, the methanotroph Methylocystis hirsuta (M. hirsuta) was used for the first time to simulate the removal of vanadium (Vn) from contaminated water through two-dimensional (2D) and three-dimensional (3D) modeling using COMSOL 4.4 software. Rotating machinery-laminar flow, transport of diluted species, and reaction engineering physics were also used. Independency analyses of the numerical network, concentration contour, velocity contour, concentration–time, and velocity–distance charts were also calculated. The data consistently showed that the removal of Vn increased with increasing velocity (which depends on time). Indeed, the amount of pollutant removal at 120 rpm, 160 rpm, and 200 rpm was maintained at 10%, 12%, and 12%, respectively. The simulation results showed excellent conformity (less than 20%) with previously reported laboratory results. This proposed model of bioremediation is thus a reliable and accurate solution for the removal of heavy metals (i.e., Vn and possibly others) from polluted areas (such as contaminated water).
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献