The Estimation of Magnetite Prospective Resources Based on Aeromagnetic Data: A Case Study of Qihe Area, Shandong Province, China

Author:

Gao Xiuhe,Xiong Shengqing,Yu Changchun,Zhang Dishuo,Wu Chengping

Abstract

In the Qihe area, the magnetic anomalies caused by deep and concealed magnetite are weak and compared with ground surveys, airborne surveys further weaken the signals. Moreover, the magnetite in the Qihe area belongs to a contact-metasomatic deposit, and the magnetic anomalies caused by the magnetite and its mother rock overlap and interweave. Therefore, it is difficult to directly delineate the target areas of magnetite according to the measured aeromagnetic maps in Qihe or similar areas, let alone estimate prospective magnetite resources. This study tried to extract magnetite-caused anomalies from aeromagnetic data by using high-pass filtering. Then, a preliminary estimation of magnetite prospective resources was realized by the 3D inversion of the extracted anomalies. In order to improve the resolution and accuracy of the inversion results, a combined model-weighting function was proposed for the inversion. Meanwhile, the upper and lower bounds and positive and negative constraints were imposed on the model parameters to further improve the rationality of the inversion results. A theoretical model with deep and concealed magnetite was established. It demonstrated the feasibility of magnetite-caused anomaly extraction and magnetite prospective resource estimation. Finally, the magnetite-caused anomalies were extracted from the measured aeromagnetic data and were consistent with known drilling information. The distribution of underground magnetic bodies was obtained by the 3D inversion of extracted anomalies, and the existing drilling data were used to delineate the volume of magnetite. In this way, the prospective resources of magnetite in Qihe area were estimated.

Funder

China Aero Geophysical Survey and Remote Sensing Center for Natural Resources

National Key Research and Development Program of China

China Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3