DLPformer: A Hybrid Mathematical Model for State of Charge Prediction in Electric Vehicles Using Machine Learning Approaches

Author:

Wang Yaoyidi1,Chen Niansheng1,Fan Guangyu1,Yang Dingyu2,Rao Lei1,Cheng Songlin1,Song Xiaoyong1

Affiliation:

1. School of Electronic Information Engineering, Shanghai Dianji University, Shanghai 201306, China

2. Alibaba Group, Hangzhou 310056, China

Abstract

Accurate mathematical modeling of state of charge (SOC) prediction is essential for battery management systems (BMSs) to improve battery utilization efficiency and ensure a good safety performance. The current SOC prediction framework only considers battery-related features but ignores vehicle information. Additionally, in light of the emergence of time-series Transformers (TSTs) that harness the power of multi-head attention, developing a SOC prediction model remains a significant challenge. Therefore, we introduce a new framework that integrates laboratory battery data with mathematical vehicle model features to improve the accuracy of the SOC and propose a prediction model named DLPformer, which can effectively capture variations in the SOC attributed to both trend and seasonal patterns. First, we apply Matlab/Simulink to simulate a mathematical model of electric vehicles and process the generated vehicle data with Spearman correlation analysis to identify the most relevant features, such as the mechanical losses of the electric motor, differential, and aerodynamic drag. Then, we employ a data fusion method to synchronize the heterogeneous datasets with different frequencies to capture the sudden changes in electric vehicles. Subsequently, the fused features are input into our prediction model, DLPformer, which incorporates a linear model for trend prediction and patch-input attention for seasonal component prediction. Finally, in order to effectively evaluate the extrapolation and adaptability of our model, we utilize different driving cycles and heterogeneous battery datasets for training and testing. The experimental results show that our prediction model significantly improves the accuracy and robustness of SOC prediction under the proposed framework, achieving MAE values of 0.18% and 0.10% across distinct driving cycles and battery types.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3