WT-CNN: A Hybrid Machine Learning Model for Heart Disease Prediction

Author:

Mohammad Farah1,Al-Ahmadi Saad2ORCID

Affiliation:

1. Center of Excellence and Information Assurance (CoEIA), King Saud University, Riyadh 11543, Saudi Arabia

2. Department of Computer Science, College of Computer and Information Sciences, King Saud University, Riyadh 11543, Saudi Arabia

Abstract

Heart disease remains a predominant health challenge, being the leading cause of death worldwide. According to the World Health Organization (WHO), cardiovascular diseases (CVDs) take an estimated 17.9 million lives each year, accounting for 32% of all global deaths. Thus, there is a global health concern necessitating accurate prediction models for timely intervention. Several data mining techniques are used by researchers to help healthcare professionals to predict heart disease. However, the traditional machine learning models for predicting heart disease often struggle with handling imbalanced datasets. Moreover, when prediction is on the bases of complex data like ECG, feature extraction and selecting the most pertinent features that accurately represent the underlying pathophysiological conditions without succumbing to overfitting is also a challenge. In this paper, a continuous wavelet transformation and convolutional neural network-based hybrid model abbreviated as WT-CNN is proposed. The key phases of WT-CNN are ECG data collection, preprocessing, RUSBoost-based data balancing, CWT-based feature extraction, and CNN-based final prediction. Through extensive experimentation and evaluation, the proposed model achieves an exceptional accuracy of 97.2% in predicting heart disease. The experimental results show that the approach improves classification accuracy compared to other classification approaches and that the presented model can be successfully used by healthcare professionals for predicting heart disease. Furthermore, this work can have a potential impact on improving heart disease prediction and ultimately enhancing patient lifestyle.

Funder

Deputyship for Research & Innovation, Ministry of Education in Saudi Arabia

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3