Free Convection of a Bingham Fluid in a Differentially-Heated Porous Cavity: The Effect of a Square Grid Microstructure

Author:

Rees D. Andrew S.ORCID

Abstract

We examine how a square-grid microstructure affects the manner in which a Bingham fluid is convected in a sidewall-heated rectangular porous cavity. When the porous microstructure is isotropic, flow arises only when the Darcy–Rayleigh number is higher than a critical value, and this corresponds to when buoyancy forces are sufficient to overcome the yield threshold of the Bingham fluid. In such cases, the flow domain consists of a flowing region and stagnant regions within which there is no flow. Here, we consider a special case where the constituent pores form a square grid pattern. First, we use a network model to write down the appropriate macroscopic momentum equations as a Darcy–Bingham law for this microstructure. Then detailed computations are used to determine strongly nonlinear states. It is found that the flow splits naturally into four different regions: (i) full flow, (ii) no-flow, (iii) flow solely in the horizontal direction and (iv) flow solely in the vertical direction. The variations in the rate of heat transfer and the strength of the flow with the three governing parameters, the Darcy–Rayleigh number, Ra, the Rees–Bingham number, Rb, and the aspect ratio, A, are obtained.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3