Numerical Analysis of the Effects of Different Rotor Tip Gaps in a Radial Turbine Operating at High Pressure Ratios Reaching Choked Flow

Author:

Galindo José1ORCID,Tiseira Andrés1ORCID,Navarro Roberto1ORCID,Inhestern Lukas2ORCID,Echavarría Juan1ORCID

Affiliation:

1. CMT-Motores Térmicos, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain

2. Institut für Luft-und Raumfahrt, Technische Universität Berlin, Marchstraße 12/14, 10587 Berlin, Germany

Abstract

To operate, radial turbines used in turbochargers require a minimum tip gap between the rotor blades and the stationary wall casing (shroud). This gap generates leakage flow driven by the pressure difference between the pressure and suction side. The tip leakage flow is largely unturned, which translates into a reduction of the shaft work due to the decrease in the total pressure. This paper investigates the flow through the rotor blade tip gap and the effects on the main flow when the turbine operates at a lower and higher pressure ratio with the presence of supersonic regions at the rotor trailing edge for two rotational speeds using computational fluid dynamics (CFD). The rotor tip gap has been decreased and increased up to 50% of the original tip gap geometry given by the manufacturer. Depending on the operational point, the results reveal that a reduction of 50% of the tip gap can lead to an increase of almost 3% in the efficiency, whereas a rise in 50% in the gap penalty the efficiency up to 3%. Furthermore, a supersonic region appears in the tip gap just when the flow enters through the pressure side, then the flow accelerates, leaving the suction side with a higher relative Mach number, generating a vortex by mixing with the mainstream. The effects of the vortex with the variation of the tip gap on the choked area at the rotor trailing edge presents a more significant change at higher than lower speeds. At a higher speed, the choked region closer to the shroud is due to the high relative inlet flow angle and the effects of the high relative motion of the shroud wall. Furthermore, this relative motion forces the tip leakage vortex to stay closer to the tip suction side, generating a subsonic region, which increases with the tip gap height. The leakage flow at lower and higher rotational speed does not affect the main flow close to the hub. However, close to the shroud, the velocity profile changes, and the generated entropy increases when the flow goes through the tip gap.

Funder

Subprograma de Formación de Profesorado Universitario (FPU). Ministerio de Universidades

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3