Optimal Process Parameters for a Thermal-Sprayed Molybdenum-Reinforced Zirconium Diboride Composite on a Dummy Substrate

Author:

Mihoob Muftah M.,Mohammed Haetham G.ORCID,Albarody Thar Mohammed BadriORCID,Ahmad Faiz,Alnarabiji Mohamad Sahban

Abstract

Thermal spray is an effective process for the fabrication of a metal matrix composite (MMC), where a zirconium diboride reinforcement is embedded in a molybdenum matrix to enable the combining of favorable properties in a new composite. The combination of two leading materials in the category of ultra-high-temperature ceramics (UHTCs) is due to a very high melting point (Mo: 2623 °C and ZrB2: 3245 °C), high thermal conductivity (Mo: 139 W/m°C and ZrB2: 24 W/m°C), good thermal shock resistance, low coefficient of thermal expansion (Mo: 5.35 µm/m°C and ZrB2: 5.9 × 10−6 K−1), retention of strength at elevated temperatures and stability in extreme environments. Thermal spraying of the Mo/ZrB2 composite possesses a non-linear behavior that is influenced by many coating variables. This characteristic makes finding the optimal factor combination difficult. Therefore, an effective and strategic statistical approach incorporating systematic experimental data is needed to optimize the process. In this study, the L9 orthogonal array in the Taguchi approach was utilized to optimize the spraying distance (SD), number of passes (NP), pressure (P) and coat-face temperature (TCF) using a dummy fiberglass substrate. The performance was evaluated based on the coating density (Cd) of the surfaces. Based on confirmation tests, our Taguchi analysis determined the ideal process parameters, which considerably enhanced the coating process. From the output response of the ANOVA, the most influential parameters for achieving a high coating density (Cd) were determined to be SD = 20 cm, NP = 24, P = 4 bar and TCF = 330 °C ((SD.)1-(NP.)3-P2-(S.T.)3). These observations show that the coating density (Cd) was significantly influenced by the coat-face temperature, followed by the number of passes, spraying distance and pressure with the following contributions 6.29, 17.89, 17.42 and 3.35%, respectively.

Funder

Universiti Teknologi PETRONAS

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3