Abstract
Drying via solar energy is an environmentally friendly and inexpensive process. For controlled and bulk level drying, a greenhouse solar dryer is the most suitable controlled level solar dryer. The efficiency of a solar greenhouse dryer can be increased by using thermal storage. The agricultural products dried in greenhouses are reported to be of a higher quality than those dried in the sun because they are shielded from dust, rain, insects, birds, and animals. The heat storage-based greenhouse was found to be superior for drying of all types of crops in comparison to a normal greenhouse dryer, as it provides constant heat throughout the drying process. Hence, this can be used in rural areas by farmers and small-scale industrialists, and with minor modifications, it can be used anywhere in the world. This article provides a comprehensive analysis of the development of solar greenhouse dryers for drying various agricultural products, including their design, thermal modelling methods, cost, energy, and environmental implications. Furthermore, the choice and application of solar photovoltaic panels and thermal energy storage units in the solar greenhouse dryers are examined in detail, with a view to achieving continuous and grid-independent drying. The energy requirements of various greenhouse dryer configurations/shapes are compared. Thermodynamic and thermal modelling research that reported on the performance prediction of solar greenhouse dryers, and drying kinetics studies on various agricultural products, has been compiled in this study.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献