Artificial Neural Network-Based Automated Crack Detection and Analysis for the Inspection of Concrete Structures

Author:

Kim Jung JinORCID,Kim Ah-Ram,Lee Seong-Won

Abstract

The damage investigation and inspection methods for infrastructures performed in small-scale (type III) facilities usually involve a visual examination by an inspector using surveying tools (e.g., cracking, crack microscope, etc.) in the field. These methods can interfere with the subjectivity of the inspector, which may reduce the objectivity and reliability of the record. Therefore, a new image analysis technique is needed to automatically detect cracks and analyze the characteristics of the cracks objectively. In this study, an image analysis technique using deep learning is developed to detect cracks and analyze characteristics (e.g., length, and width) in images for small-scale facilities. Three stages of image processing pipeline are proposed to obtain crack detection and its characteristics. In the first and second stages, two-dimensional convolutional neural networks are used for crack image detection (e.g., classification and segmentation). Based on convolution neural network for the detection, hierarchical feature learning architecture is applied into our deep learning network. After deep learning-based detection, in the third stage, thinning and tracking algorithms are applied to analyze length and width of crack in the image. The performance of the proposed method was tested using various crack images with label and the results showed good performance of crack detection and its measurement.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3