Abstract
Ternary composites of TiO2–CuxS–fly ash were used in simultaneous adsorption and photocatalysis processes for the removal of organic (dye) pollutants. Composites of semiconductor (TiO2, CuxS) nanomaterials hosted within matrices of fly ash, such as film heterostructures, are promising materials for advanced wastewater treatment. The combination of adsorption and photocatalysis processes was investigated in the removal of methylene blue (MB), considered as a standard in photocatalysis. Ternary film heterostructures obtained by doctor blade technique allows overcoming the separation step of particles from treated wastewater. The comparison between the adsorption and photodegradation tests performed with TiO2–CuxS–fly ash showed that in dark conditions, the MB removal was 75% after 360 min, while in the presence of UV radiation, almost total dismissal of MB was achieved in the same treatment period. The degradation rate of MB, when H2O2 is used as an electron acceptor, could reach 90% in adsorption and 99% in simultaneous adsorption/photocatalysis processes. The adsorption isotherm was found to follow the Langmuir and Freundlich models.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献