Abstract
In recent years, the incidence of localized heavy rainfall has increased as abnormal weather events occur more frequently. In densely populated urban areas, this type of heavy rain can cause extreme landslide damage, so that it is necessary to estimate and analyze the susceptibility of future landslides. In this regard, deep learning (DL) methodologies have been used to identify areas prone to landslides recently. Therefore, in this study, DL methodologies, including a deep neural network (DNN), kernel-based DNN, and convolutional neural network (CNN) were used to identify areas where landslides could occur. As a detailed step for this purpose, landslide occurrence was first determined as landslide inventory through aerial photographs with comparative analysis using field survey data; a training set was built for model training through oversampling based on the landslide inventory. A total of 17 landslide influencing variables that influence the frequency of landslides by topography and geomorphology, as well as soil and forest variables, were selected to establish a landslide inventory. Then models were built using DNN, kernel-based DNN, and CNN models, and the susceptibility of landslides in the study area was determined. Model performance was evaluated through the average precision (AP) score and root mean square error (RMSE) for each of the three models. Finally, DNN, kernel-based DNN, and CNN models showed performances of 99.45%, 99.44%, and 99.41%, and RMSE values of 0.1694, 0.1806, and 0.1747, respectively. As a result, all three models showed similar performance, indicating excellent predictive ability of the models developed in this study. The information of landslides occurring in urban areas, which cause a great damage even with a small number of occurrences, can provide a basis for reference to the government and local authorities for urban landslide management.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Reference88 articles.
1. Landslide Information Systemhttp://sansatai.forest.go.kr/
2. Analysis of Differences in Geomorphological Characteristics on Initiation of Landslides and Debris Flows
3. Management system for landslides hazard area using GIS;Lee;J. Korea Soc. For. Eng. Technol.,2005
4. Landslide Risk Assessment in Inje Using Logistic Regression Model;Lee;J. Korean Soc. Surv. Geodesy Photogramm. Cartogr.,2012
5. A Basic Study on the Development of the Guidelines on Setting Debris Flow Hazards;Kim,2011
Cited by
35 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献