Cog Threads for Transvaginal Prolapse Repair: Ex-Vivo Studies of a Novel Concept

Author:

Soares Catarina,Martins PedroORCID,Silva Elisabete,Hympanova Lucie,Rynkevic Rita

Abstract

The diagnosis and treatment of pelvic organ prolapse (POP) remain a relevant and scientifically challenging topic. The number of cases of genital prolapse increases each year, one in ten women need at least one surgical procedure and one in four women in midlife have asymptomatic prolapse. Using mesh implants to correct POP presents unsatisfactory clinical outcomes, requiring hospital readmission and further surgery. We hypothesize using an alternative surgical intervention technique, applying injectable biodegradable cog threads, currently used for face lifting procedures, to reinforce and correct vaginal wall defects. The threads used in this investigation are commercially available 360° 4D barb threads (PCL-19G-100), made of polycaprolactone (PCL), supplied in sterile packs (Yastrid, Shanghai, China). Eleven sows’ vaginal walls were used to analyze the immediate reinforcement effect of the threads. Uniaxial tensile testing and scanning electron microscopy (SEM) was performed for the initial characterization of the threads. Threads were inserted into the vaginal wall (control n = 5, cog n = 5) and were characterized by ball burst testing; a pull-out test was performed (n = 6). With SEM images, dimensions, such as thread diameter (≈630 µm), cut angle (≈135°), cut depth (≈200 µm) and cog distance (≈1600 µm) were measured. The mechanical behavior during uniaxial tensile testing was nonlinear. Threads could sustain 17–18 N at 18–22% of deformation. During the ball burst test, vaginal tissue reinforced with threads could support 68 N more load than normal tissue (p < 0.05), indicating its strengthening effect. Comfort and stress zones were significantly stiffer in the tissues reinforced with threads (p < 0.05; p < 0.05). Both groups showed identical deformation (elongation); no significant differences in the comfort zone length were observed, showing that threads do not affect tissue compliance. The pull-out test showed that the threads could sustain 3.827 ± 0.1891 N force when the first cog slip occurs, at 11.93 ± 0.8291 mm. This preliminary research on using PCL cog threads for POP treatment showed promising results in increased vaginal wall resistance to pressure load and, at the same time, not affecting its compliance. Nevertheless, to obtain long term host response in vivo, further investigation will be carried out.

Funder

Fundação para a Ciência e Tecnologia

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3