Rumen Fermentation and Microbiome Responses to Enzymatic Hydrolysate of Cottonseed Protein Supplementation in Continuous In Vitro Culture

Author:

Zhou JiaORCID,Ding Ziyue,Pu Qijian,Xue Benchu,Yue Shuangming,Guan Shengtao,Wang Zhisheng,Wang Lizhi,Peng Quanhui,Xue Bai

Abstract

This study aimed to evaluate the effect of enzymatic hydrolysate of cottonseed protein (ECP) on the kinetic of gas production, rumen fermentation characteristics, and microbial diversity in continuous in vitro culture with a single factorial design of supplementation with various concentrations of ECP or yeast culture. Treatments were control (without supplementation, CON), supplementation with 10 g/kg Diamond-V XP yeast culture of substrate (XP), and supplementation with 6, 12 and 18 g/kg ECP of substrate (ECP1, ECP2, ECP3), each incubated with 30 mL of buffered incubation fluids and 200 mg of fermentation substrate in graduated glass syringes fitted with plungers for 48 h. Compared with the CON treatment, supplementation of XP yeast culture increased the cumulative gas production at 12 and 24 h, the concentration of ammonia nitrogen (NH3-N) concentration at 24 and 36 h, the concentration of microbial protein (MCP) concentration at 24 and 48 h, the molar butyrate proportion at 12, 24, and 48 h, the molar valerate proportion at 48 h, and the ratio of non-glucogenic to glucogenic acids (p < 0.05). Compared with the CON treatment, the concentration of MCP and the molar propionate proportion at 12 h were higher in the ECP1 treatment (p < 0.05); the cumulative gas production at 2, 4, and 12 h, the concentration of NH3-N at 36 h and the molar valerate proportion at 48 h were higher in the ECP2 treatment (p < 0.05); the cumulative gas production at 2, 12, and 48 h, the concentration of NH3-N at 12 and 36 h, the concentration of MCP at 12, 36, and 48 h, the molar butyrate proportion at 12 and 48 h, and the molar valerate proportion at 48 h were higher in the ECP3 treatment (p < 0.05). Compared with the CON treatment, supplementation with XP yeast culture significantly altered the relative abundance of the phyla Firmicutes, Kiritimatiellaeota, and Proteobacteria, while supplementation with ECP had minimal effect on bacterial diversity. The prediction of bacterial functions showed that the main gene functions of rumen bacteria are associated with carbohydrate metabolism, amino acid metabolism, and membrane transport. The findings of this study suggest that ECP can be used as a superior feed ingredient for ruminants, the suitable level of ECP was 18 g/kg in vitro experiment.

Funder

Chengdu Mytech Biotech Co., Ltd.

Publisher

MDPI AG

Subject

General Veterinary,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3