Detection of Ulcerative Colitis Lesions from Weakly Annotated Colonoscopy Videos Using Bounding Boxes

Author:

Al-Ali Safaa12ORCID,Chaussard John2ORCID,Li-Thiao-Té Sébastien2ORCID,Ogier-Denis Éric3ORCID,Percy-du-Sert Alice4,Treton Xavier4ORCID,Zaag Hatem2ORCID

Affiliation:

1. Centre Inria d’Université Côte d’Azur—Epione Team, 2004 Rte des Lucioles, 06902 Valbonne, France

2. Laboratoire Analyse, Géométrie et Applications (LAGA), Université Sorbonne Paris Nord (USPN), CNRS, UMR 7539, 99 Avenue Jean Baptiste Clément, 93430 Villetaneuse, France

3. Institut National de la Santé et de la Recherche Médicale—INSERM, 101 Rue de Tolbiac, 75013 Paris, France

4. Hôpital Beaujon Gastro-entérologie et Assistance Nutritive, 100 Boulevard du Général Leclerc, 92110 Clichy, France

Abstract

Ulcerative colitis is a chronic disease characterized by bleeding and ulcers in the colon. Disease severity assessment via colonoscopy videos is time-consuming and only focuses on the most severe lesions. Automated detection methods enable fine-grained assessment but depend on the training set quality. To suit the local clinical setup, an internal training dataset containing only rough bounding box annotations around lesions was utilized. Following previous works, we propose to use linear models in suitable color spaces to detect lesions. We introduce an efficient sampling scheme for exploring the set of linear classifiers and removing trivial models i.e., those showing zero false negative or positive ratios. Bounding boxes lead to exaggerated false detection ratios due to mislabeled pixels, especially in the corners, resulting in decreased model accuracy. Therefore, we propose to evaluate the model sensitivity on the annotation level instead of the pixel level. Our sampling strategy can eliminate up to 25% of trivial models. Despite the limited quality of annotations, the detectors achieved better performance in comparison with the state-of-the-art methods. When tested on a small subset of endoscopic images, the best models exhibit low variability. However, the inter-patient model performance was variable suggesting that appearance normalization is critical in this context.

Funder

Investissements d’Avenir programme

Sorbonne Paris Cité, Laboratoire d’excellence INFLAMEX

Paris Region Fellowship Programme

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3