Study on Toughening and Temperature Sensitivity of Polyurethane Cement (PUC)

Author:

Hou Ning,Li Jin,Li Xiang,Cui Yongshu,Xiong Dalu,Cui Xinzhuang

Abstract

Polyurethane cement (PUC) is now commonly used in the reinforcement of old bridges, which exhibit various issues such as poor toughness, temperature-sensitive mechanical properties, and brittle failure. These problems can lead to the failure of the reinforcement effect of the PUC on old bridges in certain operating environments, leading to the collapse of such reinforced bridges. In order to alleviate these shortcomings, in this study, the toughness of PUC is improved by adding polyvinyl alcohol (PVA) fiber, carbon fiber, and steel fiber. In addition, we study the change law of the flexural strength of PUC between −40 °C and +40 °C. The control parameters evaluated are fiber type, fiber volume ratio, and temperature. A series of flexural tests and scanning electron microscope (SEM) test results show that the flexural strength first increases and then decreases with the increase in the volume-doping ratio of the three fibers. The optimum volume-mixing ratios of polyvinyl alcohol (PVA) fiber, carbon fiber, and steel fiber are 0.3%, 0.04% and 1%, respectively. Excessive addition of fiber will affect the operability and will adversely affect the mechanical properties. The flexural strength of both fiber-reinforced and control samples decreases with increasing temperature. Using the flexural test results, a two-factor (fiber content, temperature) BP neural network flexural strength prediction model is established. It is verified that the model is effective and accurate, and the experimental value and the predicted value are in good agreement.

Funder

Shandong Provincial Department of Transportation Science and Technology Program Project

Publisher

MDPI AG

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3