Study on the Optical Properties of the Point-Focus Fresnel System

Author:

Shen Fei,Huang Weidong

Abstract

The characteristic analysis of the flux formed by the heliostat in the optical system is the basis in design and optimization of the whole system. In this paper, our research subject is a pilot installation of the point-focus Fresnel system, which is a new optical design between the tower system and the dish system. For the optical system, it is very important to accurately calculate the solar flux density distribution on the receiver plane. Aiming at the case that the focal length of the heliostat is not equal to the distance from the center of the heliostat to the center of the receiver plane, based on the projection, an approximate calculation method is proposed. Using the method to calculate the solar flux density distribution of the point-focus Fresnel system, and the results are compared with that calculated by SolTrace code, it is found that the solar flux density distribution of both is relatively consistent in shape and numerical value, which verifies the accuracy of the method and it can be used for design and optimization of the point-focus Fresnel system.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference13 articles.

1. Study on solar optics and industrialization of solar thermal power generation;Peng;China Sci. Technol. Achiev.,2020

2. Performance Analysis and Optimization of an Integrated Azimuth Tracking Solar Tower;Peng;Energy,2018

3. Quick evaluation of the annual heliostat field efficiency

4. A User’s Manual for DELSOL3: A Computer Code for Calculating the Optical Performance and Optimal System Design for Solar Thermal Central Receiver Plants;Kistler,1986

5. The Role of “Allowable Flux Density” in the Design and Operation of Molten-Salt Solar Central Receivers

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3