Abstract
The supply of PV power that satisfies the needs of customers is heavily dependent on the reliability of the generating plants. However, irrespective of the robustness of the design of such physical industrial assets, they tend to depreciate with usage and/or age which, in turn, increases the allowance between the design and the operational capabilities. Therefore, to ameliorate the reliability of the system, a combination of selective and preventive maintenance actions were planned by determining the best combination (optimal preventive maintenance intervals, optimal replaced components). In this work, we developed an optimal preventive maintenance strategy with minimal repair using the iterative numerical technique for a PV plant, with and without considering the influence of environmental conditions on the system. An algorithm was developed on MATLAB to determine the optimal number of preventive maintenance actions that yields the maximum availability by selecting the components to be maintained based on the reliability threshold, without considering the environmental impact on the components. The environmental elements’ criticality was introduced, and the reliability reiterated based on the new technique. Finally, by maximizing the availability of the system, an optimal preventive maintenance for a finite horizon was established.
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献