The Influence of Texture on the Ductile-to-Brittle Transition Behavior in Fe20Cr4.5Al Oxide Dispersion Strengthened Alloy

Author:

Chao Jesus,Capdevila CarlosORCID

Abstract

This paper reports on hardness, tensile properties and notch impact bending toughness values of an Fe20Cr4.5Al oxide dispersion strengthened (ODS) alloy specifically processed to achieved different preferential orientations: random, <100>, <110> and <111> parallel to the bar axis. In spite of the differences in the grain size, it was found for <100>, <111> and random orientations that the mean hardness values on the transverse cross sections is not remarkably sensitive to the texture. On the other hand, a significantly different mean hardness value for the material having the <110> crystalline orientation was found. Regarding the yield strength, it was found for random, <100> and <111> orientations that the yield strength is proportional to the Taylor’s factor. The difference between experimental and predicted yield strength values for <110> orientation was attributed to the offset effect induced by the dislocation cell size. The variation of the cleavage fracture strength with the texture was analyzed in the basis of two criteria: one based on the Normal Stress Law (macroscopic nature), and the other based on the assumption that fracture occurs from the propagation of a microcrack-like defect (microscopic nature). In this sense, it was concluded from the fractographic evidences that random and <100> orientations follow a mechanism where the fracture kinks along of the cleavage plane from a penny shaped microcrack nucleated in a second phase particle, meanwhile in the <110> and <111> orientations the fracture propagation arises from a penny shaped defect on the cleavage plane. Finally, the lower shelf values determined for the conditions studied are the same regardless of the texture and microstructure. The effect of texture on the notch toughness was noted where plastic flow predominates, i.e., in the ductile to brittle transition temperature and in the upper shelf energy.

Funder

Comunidad de Madrid

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3