Fruit Extract, Rich in Polyphenols and Flavonoids, Modifies the Expression of DNMT and HDAC Genes Involved in Epigenetic Processes

Author:

Nowrasteh Ghodratollah1,Zand Afshin1ORCID,Raposa László Bence2ORCID,Szabó László1,Tomesz András1,Molnár Richárd1,Kiss István1,Orsós Zsuzsa1,Gerencsér Gellért1,Gyöngyi Zoltán1ORCID,Varjas Tímea1ORCID

Affiliation:

1. Department of Public Health Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary

2. Faculty of Health Sciences, University of Pécs, 7621 Pécs, Hungary

Abstract

Recently, the field of epigenetics has been intensively studied in relation to nutrition. In our study, the gene expression patterns of histone deacetylases (HDACs), which regulate the stability of histone proteins, and DNA methyltransferases (DNMTs), which regulate DNA methylation, were determined in mice. The animals were fed a human-equivalent dose of the aqueous extract of fruit seeds and peels, which is rich in flavonoids and polyphenols, for 28 days and then exposed to the carcinogen 7,12-dimethylbenz(a)anthracene (DMBA). The concentrations of trans-resveratrol and trans-piceid were determined in the consumed extract by HPLC and were 1.74 mg/L (SD 0.13 mg/L) and 2.37 mg/L (SD 0.32 mg/L), respectively, which corresponds to the consumption of 0.2–1 L of red wine, the main dietary source of resveratrol, in humans daily. Subsequently, 24 h after DMBA exposure, the expression patterns of the HDAC and DNMT genes in the liver and kidneys were determined by qRT-PCR. The DMBA-induced expression of the tested genes HDAC1, HDAC2, DNMT1, DNMT3A and DNMT3B was reduced in most cases by the extract. It has already been shown that inhibition of the DNMT and HDAC genes may delay cancer development and tumour progression. We hypothesise that the extract studied may exert chemopreventive effects.

Funder

University of Pécs

Publisher

MDPI AG

Subject

Food Science,Nutrition and Dietetics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3