Abstract
The depletion of fossil fuels and rising global warming challenges encourage to find safe and viable energy storage and delivery technologies. Hydrogen is a clean, efficient energy carrier in various mobile fuel-cell applications and owned no adverse effects on the environment and human health. However, hydrogen storage is considered a bottleneck problem for the progress of the hydrogen economy. Liquid-organic hydrogen carriers (LOHCs) are organic substances in liquid or semi-solid states that store hydrogen by catalytic hydrogenation and dehydrogenation processes over multiple cycles and may support a future hydrogen economy. Remarkably, hydrogen storage in LOHC systems has attracted dramatically more attention than conventional storage systems, such as high-pressure compression, liquefaction, and absorption/adsorption techniques. Potential LOHC media must provide fully reversible hydrogen storage via catalytic processes, thermal stability, low melting points, favorable hydrogenation thermodynamics and kinetics, large-scale availability, and compatibility with current fuel energy infrastructure to practically employ these molecules in various applications. In this review, we present various considerable aspects for the development of ideal LOHC systems. We highlight the recent progress of LOHC candidates and their catalytic approach, as well as briefly discuss the theoretical insights for understanding the reaction mechanism.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
185 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献