A Budget Constraint Incentive Mechanism Based on Risk Preferences of Collaborators in Edge Computing

Author:

Li Deng1ORCID,Hao Rongtao1,Wei Zhenyan2,Liu Jiaqi2

Affiliation:

1. School of Electronic Information, Central South University, Changsha 410075, China

2. School of Computer Science and Engineering, Central South University, Changsha 410075, China

Abstract

Mobile Edge Computing (MEC) is a new distributed computing method based on the mobile communication network. It can provide cloud services and an IT service environment for application developers and service providers at the edge of the network. Computation offloading is a crucial technology of edge computing. However, computation offloading will consume the resources of the edge devices, and therefore the edge devices will not offload computation unconditionally. In addition, the service quality of edge computing applications is related to the cooperation rate of edge devices. Therefore, it is essential to design an appropriate incentive mechanism to motivate edge devices to execute computation offloading. However, the current existing incentive mechanisms have two problems: Firstly, existing mechanisms do not account for probability distortions under uncertainty in collaborator utility valuation models. Secondly, the platform ignores the risk preferences of collaborators in multiple rounds of decision-making. To address these issues, we propose an incentive mechanism based on risk preference, IMRP. The IMRP considers the collaborator’s probability distortion, introduces an uncertain utility bonus scheme, and builds a probability distortion model to influence the collaborator’s willingness to offload tasks. The IMRP also considers the collaborator’s risk preference and builds the collaborator’s risk preference model to influence the collaborator’s bidding decision. Simulation results show that our mechanism effectively improves the cooperation rate of edge devices and the utility of the requester.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hunan Province, China

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3