Phylogenetic Distance Metrics for Studies of Focal Species in Communities: Quantiles and Cumulative Curves

Author:

Gilbert Gregory S.ORCID,Parker Ingrid M.ORCID

Abstract

The phylogenetic distance between species often predicts differences in ecologically important traits. The phylogenetic diversity and structure of biological communities can inform our understanding of the processes that shape those communities, and there is a well-developed framework for comparing phylogenetic structures of communities. However, particularly in studies of phylogenetic distances from one focal species to other members of its assemblage (a one-to-many framework), the standard metrics of community-wide studies encounter significant limitations due to the left-skewed distribution of pairwise phylogenetic distances in most biological communities. For studies that require estimating the degree of phylogenetic isolation of a focal taxon, the mean phylogenetic distance (MPD) usually provides little power to distinguish among taxa because it is heavily weighted by the many ways to be distantly related, whereas the nearest taxon distance (NTD) is highly idiosyncratic and ignores cases where multiple close relatives may contribute equally strongly to influence the focal species. Here we highlight the value of examining the cumulative distribution of phylogenetic distances in studies that take a focal-species approach. We describe and discuss the benefits of two new metrics. An integrated metric of phylogenetic distances (AUPhyDC) uses information from the whole cumulative distribution, whereas the tenth quantile (PD10) is an extremely simple metric that improves on NTD by capturing the influence of multiple close relatives on ecological interactions. Several recent examples found that PD10 did a better job of revealing ecological patterns than NTD or MPD. We provide R code to facilitate the use of these approaches and advocate for the inclusion of PD10 along with NTD and MPD in statistical packages for phylogenetic ecology.

Funder

National Science Foundation

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Agricultural and Biological Sciences (miscellaneous),Ecological Modeling,Ecology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3