The Effect of Rare Earth Cerium on Microstructure and Properties of Low Alloy Wear-Resistant Steel

Author:

Su Cheng,Feng Guanghong,Zhi Jianguo,Zhao Bo,Wu Wei

Abstract

With the continuous expansion of the application field of low alloy wear-resistant steel, higher processing plasticity and toughness are prioritized on the basis of ensuring strength and hardness. In this article, a low alloy wear-resistant steel Hardox400 was studied: by adding a mass fraction of 0.0030% of rare earth cerium as microalloying treatment, the pilot scale simulation of the rare earth wear-resistant steel was carried out using vacuum induction furnace and a four-high reversible laboratory mill. The effects of the rare earth on the occurrence state of the inclusions, microstructure, mechanical properties and wear resistance of the steel were studied by means of optical microscope (OM), scanning electron microscope (SEM) and wet sand/rubber wheel wear tester. The results show that the fine spherical CeAlO3, CeAlO3-MnS and elliptical Ce2S2O-CaO are formed by adding 0.0030% Ce, which enhances the binding force between the inclusions and matrix. The addition of rare earth Ce helps to refine the as-cast structure, prevent the transformation of proeutectoid ferrite of overcooled austenite and promotes the formation of bainite ferrite, whilst simultaneously increasing the yield strength, yield ratio and surface hardness, especially the low-temperature impact toughness approximately between −40 °C~−20 °C of the tested steel. Simultaneously, the ability to resist abrasive embedment and crack propagation is enhanced, and the wear resistance is obviously improved. The research results will provide a reference for the development of high-quality rare earth wear-resistant steel utilizing national featured resources.

Funder

Baotou Science and Technology Program

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Reference32 articles.

1. Development and Industrialization of High Strength Low-Alloy Wear Resistant Steel;An,2014

2. Wear behavior and work hardening of high strength steels in high stress abrasion

3. Microstructure and Mechanical properties of welded joint of NM450 wear-resistant steel plate;Dong;Mater. Mech. Eng.,2018

4. Application of Rare Earth Elements in Low Alloy and Alloy Steel;Wang,2016

5. Research progress of rare earth Ce on improvement of microstructure and homogeneity of as-cast steel;Li;J. Iron Steel Res.,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3