Thermodynamic Modeling and Performance Analysis of a Combined Power Generation System Based on HT-PEMFC and ORC

Author:

Kang Hyun Sung,Kim Myong-Hwan,Shin Yoon Hyuk

Abstract

Recently, the need for energy-saving and eco-friendly energy systems is increasing as problems such as rapid climate change and air pollution are getting more serious. While research on a power generation system using hydrogen energy-based fuel cells, which rarely generates harmful substances unlike fossil fuels, is being done, a power generation system that combines fuel cells and Organic Rankine Cycle (ORC) is being recognized. In the case of High Temperature Proton Exchange Membrane Fuel Cell (HT-PEMFC) with an operating temperature of approximately 150 to 200 °C, the importance of a thermal management system increases. It also produces the waste heat energy at a relatively high temperature, so it can be used as a heat source for ORC system. In order to achieve this outcome, waste heat must be used on a limited scale within a certain range of the temperature of the stack coolant. Therefore, it is necessary to utilize the waste heat of ORC system reflecting the stack thermal management and to establish and predict an appropriate operating range. By constructing an analytical model of a combined power generation system of HT-PEMFC and ORC systems, this study compares the stack load and power generation performance and efficiency of the system by operating temperature. In the integrated lumped thermal capacity model, the effects of stack operating temperature and current density, which are important factors affecting the performance change of HT-PEMFC and ORC combined cycle power generation, were compared according to operating conditions. In the comparison of the change in power and waste heat generation of the HT-PEMFC stack, it was shown that the rate of change in power and waste heat generation by the stack operating temperature was clearly changed according to the current density. In the case of the ORC system, changes in the thermal efficiency of the ORC system according to the operating temperature of the stack and the environmental temperature (cooling temperature) of the object to which this system is applied were characteristic. This study is expected to contribute to the establishment of an optimal operation strategy and efficient system configuration according to the subjects of the HT-PEMFC and ORC combined power generation system in the future.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3