Real-Time Optimal Scheduling of a Water Diversion System Using an Improved Wolf-Pack Algorithm and Scheme Library

Author:

Feng Xiaoli1ORCID,Wang Yongxing1,Sun Xiaoyu1,Qiu Baoyun1

Affiliation:

1. College of Electrical, Energy and Power Engineering, Yangzhou University, Yangzhou 225000, China

Abstract

A water diversion system (WDS) with cascade pumping stations (CPSs) plays an important role in the application of water resources. However, high energy consumption is reported due to unreasonable scheduling schemes and long decision times. Herein, this paper presents a new method to achieve optimal scheduling schemes effectively, including the head allocation of CPSs, the number of running pumps, and pump blade angles. A double-layer mathematical model for a WDS was established with the goal of achieving minimal energy consumption, considering the constraints of flow rate, water level, and the characteristics of pump units. The inner-layer model was used to obtain scheduling schemes of single-stage pumping stations, as well as the water levels and flow rates of water channels, while the outer-layer model was used to optimize inter-stage head allocation. An improved wolf-pack algorithm (IWPA) was proposed to solve the model, using a Halton sequence to obtain the uniform initial population distribution and introducing simulated annealing (SA) to improve the global searchability. Moreover, an idea for a pre-established scheme library was suggested for inner-layer models to obtain the solutions in real time with less calculation workload. Taking an actual project as a case, in contrast with the actual schemes, the optimal scheduling method could result in energy savings of 14.37–20.39%, a CO2 emission reduction of 13–32 tons per day, and water savings of 0.14–18.34%. Moreover, the time complexity decreased to square order, and the CPU time of the optimal method was about 1% that of the traditional method. This study provides an efficient method for the high-value utilization of energy and water resources for a WDS.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3