GPR Antipersonnel Mine Detection Based on Tensor Robust Principal Analysis

Author:

Song Xiaoji,Liu TaoORCID,Xiang DeliangORCID,Su Yi

Abstract

The ground Penetrating Radar (GPR) is a promising remote sensing modality for Antipersonnel Mine (APM) detection. However, detection of the buried APMs are impaired by strong clutter, especially the reflection caused by rough ground surfaces. In this paper, we propose a novel clutter suppression method taking advantage of the low-rank and sparse structure in multidimensional data, based on which an efficient target detection can be accomplished. We firstly created a multidimensional image tensor using sub-band GPR images that are computed from the band-pass filtered GPR signals, such that differences of the target response between sub-bands can be captured. Then, exploiting the low-rank and sparse property of the image tensor, we use the recently proposed Tensor Robust Principal Analysis to remove clutter by decomposing the image tensor into three components: a low-rank component containing clutter, a sparse component capturing target response, and noise. Finally, target detection is accomplished by applying thresholds to the extracted target image. Numerical simulations and experiments with different GPR systems are conducted. The results show that the proposed method effectively improves signal-to-clutter ratio by more than 20 dB and yields satisfactory results with high probability of detection and low false alarm rates.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3