Enhanced Carrier Transport Performance of Monolayer Hafnium Disulphide by Strain Engineering

Author:

Chung Yun-Fang1ORCID,Chang Shu-Tong1

Affiliation:

1. Department of Electrical Engineering, National Chung Hsing University, Taichung 402202, Taiwan

Abstract

For semiconducting two-dimensional transition metal dichalcogenides (TMDs), the carrier transport properties of the material are affected by strain engineering. In this study, we investigate the carrier mobility of monolayer hafnium disulphide (HfS2) under different biaxial strains by first-principles calculations combined with the Kubo–Greenwood mobility approach and the compact band model. The decrease/increase in the effective mass of the conduction band (CB) of monolayer HfS2 caused by biaxial tensile/compressive strain is the major reason for the enhancement/degradation of its electron mobility. The lower hole effective mass of the valence bands (VB) in monolayer HfS2 under biaxial compressive strain improves its hole transport performance compared to that under biaxial tensile strain. In summary, biaxial compressive strain causes a decrease in both the effective mass and phonon scattering rate of monolayer HfS2, resulting in an increase in its carrier mobility. Under the biaxial compressive strain reaches 4%, the electron mobility enhancement ratio of the CB of monolayer HfS2 is ~90%. For the VB of monolayer HfS2, the maximum hole mobility enhancement ratio appears to be ~13% at a biaxial compressive strain of 4%. Our results indicate that the carrier transport performance of monolayer HfS2 can be greatly improved by strain engineering.

Funder

National Science Council

National Center for High-Performance Computing

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3