Toxicological Effects of Leachates Extracted from Photocatalytic Concrete Blocks with Nano-TiO2 on Daphnia magna

Author:

Facin Fernanda12,Staub de Melo João Victor1ORCID,Costa Puerari Rodrigo2ORCID,Matias William Gerson2ORCID

Affiliation:

1. Department of Civil Engineering, Federal University of Santa Catarina (UFSC), Rua Engenheiro Agronômico Andrei Cristian Ferreira, Trindade, Florianópolis 88040-900, SC, Brazil

2. Department of Sanitary and Environmental Engineering, Federal University of Santa Catarina (UFSC), Rua Engenheiro Agronômico Andrei Cristian Ferreira, Trindade, Florianópolis 88040-900, SC, Brazil

Abstract

The incorporation of titanium dioxide nanoparticles into concrete blocks for paving adds photocatalytic functionality to the cementitious matrix, providing self-cleaning and pollutant-degrading properties. However, wear and leaching from these pavements can release potentially toxic compounds into water bodies, affecting aquatic organisms. In this context, this study evaluated the toxicological effects of leachates from photocatalytic concrete containing nano-TiO2 with an average size of 10 nm and anatase crystallinity on Daphnia magna. Acute and chronic toxicity tests on neonates were conducted with two leachate extracts: one from reference concrete and one from photocatalytic concrete (with 9% nano-TiO2 added by mass of cement). In terms of acute toxicity, the reference concrete extract had an EC50 of 104.0 mL/L at 48 h, whereas the concrete with TiO2 had an EC50 of 64.6 mL/L at 48 h. For chronic toxicity, the leachate from reference concrete had a significant effect (p < 0.05) on the size parameter with an LOEC of 4 mL/L, whereas the leachate from concrete with 9% nano-TiO2 did not have significant toxicological effects on any of the analyzed parameters (longevity, size, reproduction, and age of first posture) (LOEC > 6.5 mL/L). Furthermore, FTIR analysis indicated that TiO2 nanoparticles were not detected in the leachates, suggesting efficient anchoring within the cementitious matrix. The results indicate that there was no increase in the chronic toxicity of the leachate from the cementitious matrix when nanoparticles were added at a 9% mass ratio of cement.

Funder

Coordination for the Improvement of Higher Education-Personnel—CAPES

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3