Audio Signal-Stimulated Multilayered HfOx/TiOy Spiking Neuron Network for Neuromorphic Computing

Author:

Gao Shengbo12,Ma Mingyuan234,Liang Bin12,Du Yuan234ORCID,Du Li234,Chen Kunji234ORCID

Affiliation:

1. School of Physics, Nanjing University, Nanjing 210093, China

2. Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China

3. School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China

4. Jiangsu Provincial Key Laboratory of Photonic and Electronic Materials Sciences and Technology, Nanjing University, Nanjing 210093, China

Abstract

As the key hardware of a brain-like chip based on a spiking neuron network (SNN), memristor has attracted more attention due to its similarity with biological neurons and synapses to deal with the audio signal. However, designing stable artificial neurons and synapse devices with a controllable switching pathway to form a hardware network is a challenge. For the first time, we report that artificial neurons and synapses based on multilayered HfOx/TiOy memristor crossbar arrays can be used for the SNN training of audio signals, which display the tunable threshold switching and memory switching characteristics. It is found that tunable volatile and nonvolatile switching from the multilayered HfOx/TiOy memristor is induced by the size-controlled atomic oxygen vacancy pathway, which depends on the atomic sublayer in the multilayered structure. The successful emulation of the biological neuron’s integrate-and-fire function can be achieved through the utilization of the tunable threshold switching characteristic. Based on the stable performance of the multilayered HfOx/TiOy neuron and synapse, we constructed a hardware SNN architecture for processing audio signals, which provides a base for the recognition of audio signals through the function of integration and firing. Our design of an atomic conductive pathway by using a multilayered TiOy/HfOx memristor supplies a new method for the construction of an artificial neuron and synapse in the same matrix, which can reduce the cost of integration in an AI chip. The implementation of synaptic functionalities by the hardware of SNNs paves the way for novel neuromorphic computing paradigms in the AI era.

Funder

National Key R&D Program of China

National Nature Science Foundation of China

National Key Research and Development Program of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3