Optimization of High-Density Fermentation Conditions for Saccharomycopsis fibuligera Y1402 through Response Surface Analysis

Author:

Yuan Hongyang1,Sun Qi1,Wang Lanshuang1,Fu Zhilei2,Zhou Tianze1,Ma Jinghao1,Liu Xiaoyan3ORCID,Fan Guangsen14ORCID,Teng Chao1

Affiliation:

1. Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China

2. School of Biology and Food Science, Hebei Normal University for Nationalities, Chengde 067000, China

3. China Food Flavor and Nutrition Health Innovation Center, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China

4. Sweet Code Nutrition & Health Institute, Zibo 256306, China

Abstract

Saccharomycopsis fibuligera, which produces enzymes like amylase and protease as well as flavor substances like β-phenyl ethanol and phenyl acetate, plays a crucial role in traditional fermented foods. However, this strain still lacks a high-density fermentation culture, which has had an impact on the strain’s industrial application process. Therefore, this study investigated the optimization of medium ingredients and fermentation conditions for high-density fermentation of S. fibuligera Y1402 through single-factor design, Plackett–Burman design, steepest ascent test, and response surface analysis. The study found that glucose at 360.61 g/L, peptone at 50 g/L, yeast extract at 14.65 g/L, KH2PO4 at 5.49 g/L, MgSO4 at 0.40 g/L, and CuSO4 at 0.01 g/L were the best medium ingredients for S. fibuligera Y1402. Under these conditions, after three days of fermentation, the total colony count reached 1.79 × 108 CFU/mL. The optimal fermentation conditions were determined to be an initial pH of 6.0, an inoculum size of 1.10%, a liquid volume of 12.5 mL/250 mL, a rotation speed of 120 r/min, a fermentation temperature of 21 °C and a fermentation time of 53.50 h. When fermentation was conducted using the optimized medium and conditions, the total colony count achieved a remarkable value of 5.50 × 109 CFU/mL, exhibiting a substantial increase of nearly 31 times the original value in the optimal culture medium. This significant advancement offers valuable insights and a reference for the industrial-scale production of S. fibuligera.

Funder

Research Foundation for Youth Scholars of Beijing Technology and Business University

China Food Flavor and Nutrition Health Innovation Center

the Cultivation Project of Double First-Class Disciplines of Food Science and Engineering, Beijing Technology and Business University

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3