Establishment of a Rapid Detection Method for Cadmium Ions via a Specific Cadmium Chelator N-(2-Acetamido)-Iminodiacetic Acid Screened by a Novel Biological Method

Author:

Wang Yali12,Sun Wenxue1,Ma Tinglin1,Brake Joseph3,Zhang Shuangbo1,Chen Yanke2,Li Jing14,Wu Xiaobin1ORCID

Affiliation:

1. Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China

2. Department of Chemistry and Chemical Engineering, Yulin University, Yulin 719000, China

3. Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109-0600, USA

4. Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Centre, SE106 91 Stockholm, Sweden

Abstract

Heavy metal ions such as cadmium, mercury, lead, and arsenic in the soil cannot be degraded naturally and are absorbed by crops, leading to accumulation in agricultural products, which poses a serious threat to human health. Therefore, establishing a rapid and efficient method for detecting heavy metal ions in agricultural products is of great significance to ensuring the health and safety. In this study, a novel optimized spectrometric method was developed for the rapid and specific colorimetric detection of cadmium ions based on N-(2-Acetamido)-iminodiacetic acid (ADA) and Victoria blue B (VBB) as the chromogenic unit. The safety evaluation of ADA showed extremely low biological toxicity in cultured cells and live animals. The standard curve is y = 0.0212x + 0.1723, R2 = 0.9978, and LOD = 0.08 μM (0.018 mg/kg). The liner concentrations detection range of cadmium is 0.1–10 μM. An inexpensive paper strip detection method was developed with a detection limit of 0.2 μM to the naked eye and a detection time of less than 1 min. The method was successfully used to assess the cadmium content of rice, soybean, milk, grape, peach, and cabbage, and the results correlated well with those determined by inductively coupled plasma–mass spectrometry (ICP-MS). Thus, our study demonstrated a novel rapid, safe, and economical method for onsite, real-time detection of cadmium ions in agricultural products.

Funder

Shanghai Agriculture Applied Technology Development Program

Shaanxi Provincial Talent Engineering

Doctoral Scientific Research Foundation of Yulin University

National Key R&D Program of China

Fund of Shanghai Engineering Research Center of Plant Germplasm Resources

Publisher

MDPI AG

Reference57 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3