Rapid Determination of Crude Protein Content in Alfalfa Based on Fourier Transform Infrared Spectroscopy

Author:

Du Haijun1ORCID,Zhang Yaru2,Ma Yanhua1,Jiao Wei3,Lei Ting1,Su He1

Affiliation:

1. College of Mechanical and Electrical Engineering, Inner Mongolia Agricultural University, No. 36 Zhaowuda Road, Hohhot 010018, China

2. College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, No. 36 Zhaowuda Road, Hohhot 010018, China

3. The China Academy of Grassland Research, No. 120 Wulanchabu East Street, Saihan District, Hohhot 010018, China

Abstract

The crude protein (CP) content is an important determining factor for the quality of alfalfa, and its accurate and rapid evaluation is a challenge for the industry. A model was developed by combining Fourier transform infrared spectroscopy (FTIS) and chemometric analysis. Fourier spectra were collected in the range of 4000~400 cm−1. Adaptive iteratively reweighted penalized least squares (airPLS) and Savitzky–Golay (SG) were used for preprocessing the spectral data; competitive adaptive reweighted sampling (CARS) and the characteristic peaks of CP functional groups and moieties were used for feature selection; partial least squares regression (PLSR) and random forest regression (RFR) were used for quantitative prediction modelling. By comparing the combined prediction results of CP content, the predictive performance of airPLST-cars-PLSR-CV was the best, with an RP2 of 0.99 and an RMSEP of 0.053, which is suitable for establishing a small-sample prediction model. The research results show that the combination of the PLSR model can achieve an accurate prediction of the crude protein content of alfalfa forage, which can provide a reliable and effective new detection method for the crude protein content of alfalfa forage.

Funder

Interdisciplinary Research Fund of Inner Mongolia Agricultural University

National Natural Science Foundation of China

Fundamental Research Funds of Inner Mongolia Agricultural University

Science and Technology Planning Project of Inner Mongolia Autonomous Region

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3