Anti-Type II Diabetic Effects of Coix Seed Prolamin Hydrolysates: Physiological and Transcriptomic Analyses

Author:

Zhang Guifang12,Li Zhiming12ORCID,Zhang Shu12,Bai Lu12,Zhou Hangqing12,Zhang Dongjie123

Affiliation:

1. National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing 163319, China

2. Food College, Heilongjiang Bayi Agricultural University, Daqing 163319, China

3. Key Laboratory of Agro-Products Processing and Quality Safety of Heilongjiang Province, Daqing 163319, China

Abstract

Previous studies have demonstrated that enzymatically prepared coix seed prolamin hydrolysates (CHPs) contain several bioactive peptides that efficiently inhibit the activity of target enzymes (α-glucosidase and dipeptidyl kinase-IV) in type 2 diabetes mellitus (T2DM). However, the anti-T2DM effects and potential mechanisms of CHPs as a whole in vivo have not yet been systematically explored. Therefore, we evaluated the preventive, therapeutic, and modifying effects of CHPs on T2DM by combining physiological and liver transcriptomics with a T2DM mouse model. The results showed that sustained high-fructose intake led to prediabetic symptoms in mice, with abnormal fluctuations in blood glucose and blood lipid levels. Intervention with CPHs effectively prevented weight loss; regulated abnormal changes in blood glucose; improved impaired glucose tolerance; inhibited the abnormal expression of total cholesterol, triglycerides, and low-density lipoproteins; alleviated insulin resistance; and restored pancreatic islet tissue function in mice fed a high-fructose diet. In addition, we found that CHPs also play a palliative role in the loss of liver function and protect various organ tissues (including the liver, kidneys, pancreas, and heart), and are effective in preventing damage to the liver and pancreatic islet cells. We also found that the intake of CHPs reversed the abnormally altered hepatic gene profile in model mice and identified 381 differentially expressed genes that could serve as key genes for preventing the development of T2DM, which are highly correlated with multiple glycolipid metabolic pathways. We demonstrated that CHPs play a positive role in the normal functioning of the insulin signalling pathway dominated by the IRS-1/PI3K/AKT (insulin receptor substrates-1/phosphoinositide 3-kinase/protein kinase B) pathway. In summary, CHPs can be used as effective food-borne glucose-modifying components of healthy foods.

Funder

National Program on Key Research Project

Heilongjiang Province Specialty Discipline Project for the Production and Processing Advantages of Coarse Cereals

Heilongjiang Bayi Agricultural University Academic Achievement and Talent Introduction Research Launch Project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3