Near-Infrared Spectroscopy Analysis of the Phytic Acid Content in Fuzzy Cottonseed Based on Machine Learning Algorithms

Author:

Yin Hong1,Mo Wenlong1,Li Luqiao1,Ma Yiting1,Chen Jinhong12,Zhu Shuijin12ORCID,Zhao Tianlun12ORCID

Affiliation:

1. College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China

2. Hainan Institute, Zhejiang University, Sanya 572025, China

Abstract

Cottonseed is rich in oil and protein. However, its antinutritional factor content, of phytic acid (PA), has limited its utilization. Near-infrared (NIR) spectroscopy, combined with chemometrics, is an efficient and eco-friendly analytical technique for crop quality analysis. Despite its potential, there are currently no established NIR models for measuring the PA content in fuzzy cottonseeds. In this research, a total of 456 samples of fuzzy cottonseed were used as the experimental materials. Spectral pre-treatments, including first derivative (1D) and standard normal variable transformation (SNV), were applied, and the linear partial least squares (PLS), nonlinear support vector machine (SVM), and random forest (RF) methods were utilized to develop accurate calibration models for predicting the content of PA in fuzzy cottonseed. The results showed that the spectral pre-treatment significantly improved the prediction performance of the models, with the RF model exhibiting the best prediction performance. The RF model had a coefficient of determination in prediction (R2p) of 0.9114, and its residual predictive deviation (RPD) was 3.9828, which indicates its high accuracy in measuring the PA content in fuzzy cottonseed. Additionally, this method avoids the costly and time-consuming delinting and crushing of cottonseeds, making it an economical and environmentally friendly alternative.

Funder

National Key Technology R&D Program of China

Jiangsu Collaborative Innovation Center for Modern Crop Production

National Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3