Affiliation:
1. CARTIF Technology Centre, Boecillo, 47151 Valladolid, Spain
2. Food Technology Area, Department of Agricultural and Forestry Engineering, University of Valladolid, Av. Madrid, 50, 34004 Palencia, Spain
Abstract
Soy remains the legume protein of excellence for plant-based meat alternatives due to its fiber-forming potential. In this study, protein-rich powders from soy protein isolate (SPI), concentrate (SPC), and their mixture (SPM) were thoroughly characterized for their proximate composition, nutritional quality, and physicochemical properties to understand their structuring behavior during high-moisture extrusion. SPI presented higher degrees of protein denaturation and aggregation, least gelation concentration and lower essential amino acid contents. Thus, an SPI:SPC combination (1:9 ratio, 70% protein) was extruded at three different screw speeds (300, 350, and 400 rpm) and two temperature profiles (120 and 140 °C maximum temperature). The effects of the processing parameters on the extrudates were evaluated for their appearance (fibrousness), texture (TPA, cutting force, and anisotropy), color, protein structure (FTIR), and trypsin inhibitors. Higher temperatures resulted in softer and darker extrudates, with increased visual and instrumental anisotropy. Increasing screw speeds led to softer and lighter extrudates, without a clear fibrousness effect. β-sheet structures decreased and intermolecular aggregates (A1) increased after extrusion, especially at 140 °C, together with the formation of intramolecular aggregates (A2). Extrusion also significantly decreased the amount of trypsin inhibitors (>90%). This study demonstrates that extrusion parameters need to be carefully selected to achieve meat analogs with optimal textural and nutritional characteristics.