Vegetation Growth Dynamic and Sensitivity to Changing Climate in a Watershed in Northern China

Author:

Cao Wenxu,Xu HangORCID,Zhang ZhiqiangORCID

Abstract

Global climate change profoundly influences the patterns of vegetation growth. However, the disparities in vegetation responses induced by regional climate characteristics are generally weakened in large-scale studies. Meanwhile, distinct climatic drivers of vegetation growth result in the different reactions of different vegetation types to climate variability. Hence, it is an extraordinary challenge to detect and attribute vegetation growth changes. In this study, the spatiotemporal distribution and dynamic characteristics of climate change effects on vegetation growth from 2000 to 2020 were investigated by the normalized difference vegetation index (NDVI) dataset during the growing season (April–October). Meanwhile, we further detected the climate-dominated factor between different vegetation types (i.e., forest, shrub, and grass) within the Chaohe watershed located in temperate northern China. The results revealed a continuous greening trend over the entire study period, despite slowing down since 2007 (p < 0.05). Growing-season precipitation (P) was identified as the dominant climatic factor of the greening trend (p < 0.05), and approximately 34.83% of the vegetated area exhibited a significant response to increasing P. However, continued warming-induced intensive evaporation demand caused the vegetation growth to slow down. Hereinto, the areas with a significantly positive response of forest growth to temperature decreased from 24.38% to 18.06% (p < 0.05). In addition, solar radiation (SW) corresponds to the vegetation trend in the watershed (p < 0.05), and the significantly positive SW-influenced areas increased from 9.24% and 2.64% to 11.78% and 3.37% in forests and shrubland, respectively (p < 0.05). Our findings highlight the nonlinearity of long-term vegetation growth trends with climate variation and the cause of this divergence, which provide vital insights into forecasting vegetation responses to future climate change.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3