Induction Motor Improved Vector Control Using Predictive and Model-Free Algorithms Together with Homotopy-Based Feedback Linearization

Author:

Costin Madalin12,Lazar Corneliu1

Affiliation:

1. Department of Automatic Control and Applied Informatics, “Gheorghe Asachi” Technical University of Iasi, 700050 Iasi, Romania

2. Department of Automatic Control and Electrical Engineering, “Dunarea de Jos” University of Galati, 800008 Galati, Romania

Abstract

Vector control of an induction machine (IM) is typically performed by using cascade control structures with conventional linear proportional–integral (PI) controllers, the inner loop being designed for current control and the outer loop for rotor flux and speed control. In this paper, starting with the dq model of the IM, advanced control algorithms are proposed for the two control loops of the cascade structure. For the current inner loop, after the decoupling of the two dq currents, predictive control algorithms are employed to independently control the currents, considering the constraints imposed by the electrical signal physics limitations. Since the outer loop has a nonlinear affine multivariable plant model, a homotopy-based variant of feedback linearization is used to obtain a nonsingular decoupling matrix of the feedback transformation even when the rotor flux is zero at the start-up of the motor. During the continuous variation in the homotopy parameter, the plant model is variable and, for this reason, model-free algorithms are used to control the flux and speed of the IM due to their capabilities to manage complex dynamics from data without requiring knowledge of the plant model. The performances of the proposed cascade control strategy with advanced algorithms in the two loops were tested by simulation and compared with those obtained with conventional PI controllers, resulting in better dynamic behavior for predictive and model-free control.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3