Identifying and Manipulating Giant Vesicles: Review of Recent Approaches

Author:

Toyota Taro,Zhang Yiting

Abstract

Giant vesicles (GVs) are closed bilayer membranes that primarily comprise amphiphiles with diameters of more than 1 μm. Compared with regular vesicles (several tens of nanometers in size), GVs are of greater scientific interest as model cell membranes and protocells because of their structure and size, which are similar to those of biological systems. Biopolymers and nano-/microparticles can be encapsulated in GVs at high concentrations, and their application as artificial cell bodies has piqued interest. It is essential to develop methods for investigating and manipulating the properties of GVs toward engineering applications. In this review, we discuss current improvements in microscopy, micromanipulation, and microfabrication technologies for progress in GV identification and engineering tools. Combined with the advancement of GV preparation technologies, these technological advancements can aid the development of artificial cell systems such as alternative tissues and GV-based chemical signal processing systems.

Funder

Ministry of Education, Culture, Sports, Science and Technology

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3