The Life Cycle Assessment for Polylactic Acid (PLA) to Make It a Low-Carbon Material

Author:

Rezvani Ghomi Erfan RezvaniORCID,Khosravi Fatemeh,Saedi Ardahaei Ali Saedi,Dai YunqianORCID,Neisiany Rasoul EsmaeelyORCID,Foroughi Firoozeh,Wu Min,Das Oisik,Ramakrishna SeeramORCID

Abstract

The massive plastic production worldwide leads to a global concern for the pollution made by the plastic wastes and the environmental issues associated with them. One of the best solutions is replacing the fossil-based plastics with bioplastics. Bioplastics such as polylactic acid (PLA) are biodegradable materials with less greenhouse gas (GHG) emissions. PLA is a biopolymer produced from natural resources with good mechanical and chemical properties, therefore, it is used widely in packaging, agriculture, and biomedical industries. PLA products mostly end up in landfills or composting. In this review paper, the existing life cycle assessments (LCA) for PLA were comprehensively reviewed and classified. According to the LCAs, the energy and materials used in the whole life cycle of PLA were reported. Finally, the GHG emissions of PLA in each stage of its life cycle, including feedstock acquisition and conversion, manufacturing of PLA products, the PLA applications, and the end of life (EoL) options, were described. The most energy-intensive stage in the life cycle of PLA is its conversion. By optimizing the conversion process of PLA, it is possible to make it a low-carbon material with less dependence on energy sources.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3