Synthesis of a Reactive Template-Induced Core–Shell PZS@ZIF-67 Composite Microspheres and Its Application in Epoxy Composites

Author:

Song Kunpeng,Wang Yinjie,Ruan Fang,Yang WeiweiORCID,Fang Zhuqing,Zheng Dongsen,Li Xueli,Li Nianhua,Qiao Meizhuang,Liu Jiping

Abstract

Developing superior properties of epoxy resin composites with high fire resistance, light smoke, and low toxicity has been the focus of the research in the flame-retardant field. In particular, it is essential to decrease the emissions of toxic gases and smoke particles generated during the thermal decomposition of epoxy resin (EP) to satisfy the industrial requirements for environmental protection and safety. Consequently, the PZS@ZIF-67 composite was designed and synthesized by employing the hydroxyl group-containing polyphosphazene (poly(cyclotriphosphazene-co-4,4′-dihydroxydiphenylsulfone), PZS) as both the interfacial compatibility and an in situ template and the ZIF-67 nanocrystal as a nanoscale coating and flame-retardant cooperative. ZIF-67 nanocrystal with multidimensional nanostructures was uniformly wrapped on the surface of PZS microspheres. Subsequently, the acquired PZS@ZIF-67 composite was incorporated into the epoxy resin to prepare composite samples for the study of their fire safety, toxicity suppression, and mechanical performance. Herein, the EP/5% PZS@ZIF-67 passed the V-0 rating in a UL-94 test with a 31.9% limit oxygen index value. More precisely, it is endowed with a decline of 51.08%, 28.26%, and 37.87% of the peak heat release rate, the total heat release, and the total smoke production, respectively. In addition, the unique structure of PZS@ZIF-67 microsphere presented a slight impact on the mechanical properties of EP composites at low loading. The PZS@ZIF-67 possible flame-retardant mechanism was speculated based on the analysis of the condensed phase and the gas phase of EP composites.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3