Abstract
Ceramics are non-metallic inorganic materials fabricated from natural or high-purity raw materials through heating and cooling processes. Urethane is a three-dimensional plastic with both elasticity and chemical resistance; moreover, it is used as a rubber substitute. The use of both materials in various applications is gradually increasing. However, as ceramics and urethane have distinctly different properties, this prompted questions regarding the properties of a material that is fabricated using both materials. Therefore, we studied the characteristics of a composite material fabricated through physical foaming using a batch process. The process was conducted with gas saturation, foaming, cooling, and curing. When a specimen of 2 mm thickness was saturated in 5 MPa of CO2 for 2 h, the solubility was 6.43%; when foaming was carried out at a temperature of 150 °C in boiled glycerin, the foaming ratio, cell size, cell density, and void fraction were found to be 43.62%, 24.40 µm, 9.1 × 10⁷ cells/cm2, and 22.11%, respectively. Furthermore, the volume increased by 102.96%, color changed from dark to light gray, hardness decreased by 24%, thermal diffusivity increased by 0.046 mm2/s at 175 °C, and friction coefficient decreased to 0.203. Thus, the microcellular foamed ceramic urethane exhibits a larger volume, lighter weight, and improved thermal conductivity and friction coefficient.
Funder
National Research Foundation of Korea
Subject
Polymers and Plastics,General Chemistry
Reference26 articles.
1. Fundamentals of Materials Science and Engineering;Callister,2005
2. Engineering Materials—An Introduction to Properties, Applications and Design;Ashby,2006
3. Structures of Metal and Ceramics, Polymer Structures, Mechanical Properties, Thermal Properties, Economic, Environmental, and Societal Issues in Material Science and Engineering;Callister,2016
4. Fabrication and mechanism of poly(butylene succinate) urethane ionomer microcellular foams with high thermal insulation and compressive feature
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献