Abstract
Polymers adsorbed on nanoparticles (NPs) are important elements that determine the dispersion of NPs in polymer nanocomposite (PNC) films. While previous studies have shown that increasing the number of adsorbed polymers on NPs can improve their dispersion during the drying process, the exact mechanism remained unclear. In this study, we investigated the role of adsorbed polymers in determining the microstructure and dispersion of NPs during the drying process. Investigation of the structural development of NPs using the synchrotron vertical-small-angle X-ray scattering technique revealed that increasing polymer adsorption suppresses bonding between the NPs at later stages of drying, when they approach each other and come in contact. On the particle length scale, NPs with large amounts of adsorbed polymers form loose clusters, whereas those with smaller amounts of adsorbed polymers form dense clusters. On the cluster length scale, loose clusters of NPs with large amounts of adsorbed polymers build densely packed aggregates, while dense clusters of NPs with small amounts of adsorbed polymers become organized into loose aggregates. The potential for the quantitative control of NP dispersion in PNC films via modification of polymer adsorption was established in this study.
Funder
National Research Foundation of Korea
Subject
Polymers and Plastics,General Chemistry
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献