Dynamic Mechanical Properties and Thermal Properties of Longitudinal Basalt/Woven Glass Fiber Reinforced Unsaturated Polyester Hybrid Composites

Author:

Haris Nur Izzah NabilahORCID,Ilyas R. A.ORCID,Hassan Mohamad ZakiORCID,Sapuan S. M.,Afdzaluddin AtiqahORCID,Jamaludin Khairur RijalORCID,Zaki Sheikh AhmadORCID,Ramlie Faizir

Abstract

This study investigates the mechanical, thermal, and chemical properties of basalt/woven glass fiber reinforced polymer (BGRP) hybrid polyester composites. The Fourier transform infrared spectroscopy (FTIR) was used to explore the chemical aspect, whereas the dynamic mechanical analysis (DMA) and thermomechanical analysis (TMA) were performed to determine the mechanical and thermal properties. The dynamic mechanical properties were evaluated in terms of the storage modulus, loss modulus, and damping factor. The FTIR results showed that incorporating single and hybrid fibers in the matrix did not change the chemical properties. The DMA findings revealed that the B7.5/G22.5 composite with 7.5 wt% of basalt fiber (B) and 22.5 wt% of glass fiber (G) exhibited the highest elastic and viscous properties, as it exhibited the higher storage modulus (8.04 × 109 MPa) and loss modulus (1.32 × 109 MPa) compared to the other samples. All the reinforced composites had better damping behavior than the neat matrix, but no further enhancement was obtained upon hybridization. The analysis also revealed that the B22.5/G7.5 composite with 22.5 wt% of basalt fiber and 7.5 wt% of glass fiber had the highest Tg at 70.80 °C, and increased by 15 °C compared to the neat matrix. TMA data suggested that the reinforced composites had relatively low dimensional stabilities than the neat matrix, particularly between 50 to 80 °C. Overall, the hybridization of basalt and glass fibers in unsaturated polyester formed composites with higher mechanical and thermal properties than single reinforced composites.

Funder

Geran Universiti Penyelidik’ (GUP) UTMFR Scheme

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3