Investigation of Electrical Properties of BiFeO3/LDPE Nanocomposite Dielectrics with Magnetization Treatments

Author:

Song Wei,Sun Yu,Yu Tian-Jiao,Fan Yu-Zhang,Sun Zhi,Han BaiORCID

Abstract

The purpose of this paper is to study the effect of nano-bismuth ferrite (BiFeO3) on the electrical properties of low-density polyethylene (LDPE) under magnetic-field treatment at different temperatures. BiFeO3/LDPE nanocomposites with 2% mass fraction were prepared by the melt-blending method, and their electrical properties were studied. The results showed that compared with LDPE alone, nanocomposites increased the crystal concentration of LDPE and the spherulites of LDPE. Filamentous flake aggregates could be observed. The spherulite change was more obvious under high-temperature magnetization. An agglomerate phenomenon appeared in the composite, and the particle distribution was clear. Under high-temperature magnetization, BiFeO3 particles were increased and showed a certain order, but the change for room-temperature magnetization was not obvious. The addition of BiFeO3 increased the crystallinity of LDPE. Although the crystallinity decreased after magnetization, it was higher than that of LDPE. An AC test showed that the breakdown strength of the composite was higher than that of LDPE. The breakdown strength increased after magnetization. The increase of breakdown strength at high temperature was less, but the breakdown field strength of the composite was higher than that of LDPE. Compared with LDPE, the conductive current of the composite was lower. So, adding BiFeO3 could improve the dielectric properties of LDPE. The current of the composite decayed faster with time. The current decayed slowly after magnetization.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Reference21 articles.

1. Polyethylene Nanocomposites for Power Cable Insulations

2. Synthesis and characterization of low density polyethylene with multiferroic bismuth ferrite nanocomposite

3. Preparation and characterization of multiferroic material BiFeO3;Song;J. Inorg. Mater.,2012

4. Research and development progress and path analysis of HVDC cable materials;Li;High Volt. Technol.,2018

5. Understanding the conduction and breakdown properties of polyethylene nanodielectrics: effect of deep traps

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3