Going Beyond the Carothers, Flory and Stockmayer Equation by Including Cyclization Reactions and Mobility Constraints

Author:

De Keer LiesORCID,Van Steenberge Paul H. M.ORCID,Reyniers Marie-Françoise,D’hooge Dagmar R.ORCID

Abstract

A challenge in the field of polymer network synthesis by a step-growth mechanism is the quantification of the relative importance of inter- vs. intramolecular reactions. Here we use a matrix-based kinetic Monte Carlo (kMC) framework to demonstrate that the variation of the chain length distribution and its averages (e.g., number average chain length xn), are largely affected by intramolecular reactions, as mostly ignored in theoretical studies. We showcase that a conventional approach based on equations derived by Carothers, Flory and Stockmayer, assuming constant reactivities and ignoring intramolecular reactions, is very approximate, and the use of asymptotic limits is biased. Intramolecular reactions stretch the functional group (FG) conversion range and reduce the average chain lengths. In the likely case of restricted mobilities due to diffusional limitations because of a viscosity increase during polymerization, a complex xn profile with possible plateau formation may arise. The joint consideration of stoichiometric and non-stoichiometric conditions allows the validation of hypotheses for both the intrinsic and apparent reactivities of inter- and intramolecular reactions. The kMC framework is also utilized for reverse engineering purposes, aiming at the identification of advanced (pseudo-)analytical equations, dimensionless numbers and mechanistic insights. We highlight that assuming average molecules by equally distributing A and B FGs is unsuited, and the number of AB intramolecular combinations is affected by the number of monomer units in the molecules, specifically at high FG conversions. In the absence of mobility constraints, dimensionless numbers can be considered to map the time variation of the fraction of intramolecular reactions, but still, a complex solution results, making a kMC approach overall most elegant.

Funder

Fonds Wetenschappelijk Onderzoek

Vlaio Moonshot program

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3