Analysis of Thermal Characteristics of MEMS Sensors for Measuring the Rolling Period of Maritime Autonomous Surface Ships

Author:

Lee Hee-Jin,Park Deuk-JinORCID

Abstract

Recently, with the emergence of maritime autonomous surface ships (MASS), ensuring seaworthiness has increased with the operation of MASS. Ship stability is important for safety, and technical methods for controlling a ship’s motion are required to evaluate the stability. A ship’s rolling period is estimated using microelectromechanical systems (MEMS) sensors to measure the ship’s metacentric height. However, weather changes (e.g., temperature) are drastic due to various marine environments in the sea. Hence, it is necessary to analyze MEMS sensors’ thermal characteristics for applying them to MASS. This study aims to analyze the thermal characteristics of a siX-axis MEMS sensor for its application in MASS. The experiments analyzed measurement errors and noise at six steps in the range of 25–75 °C in which the MEMS sensor can be operated. The experimental results showed that the gyroscope’s thermal error and MEMS sensor’s noise level were much larger than those of the accelerometer and the respective thermal error values along the Z-axis of the accelerometer and gyroscope were the most stable compared to those along the other axes. The findings can be applied to a measurement method of the stability of MASS employing MEMS sensors in navigation equipment.

Funder

Ministry of Oceans and Fisheries

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Reference37 articles.

1. Annual Overview of Marine Casualties and Incidents,2020

2. Safety and Shipping Review,2019

3. Towards the assessment of potential impact of unmanned vessels on maritime transportation safety

4. MSC.1/Circ.1638: Outcome of the Regulatory Scoping Exercise for the Use of Maritime Autonomous Surface,2021

5. Know your safety indicator – A determination of merchant vessels Bow Crossing Range based on big data analytics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3