Abstract
In this paper, the aerodynamic performance of a Hex-rotor unmanned aerial vehicle (UAV) with different rotational speeds (1500–2300 RPM) considering the horizontal airflow conditions is analyzed by both simulations and experiments. A low-speed wind tunnel experiments platform is applied to measure the thrust, torque, and power consumption of a Hex-rotor UAV with different rotational speeds in horizontal airflow, which varied from 0 m/s–4 m/s. First, this paper introduces the effect of horizontal airflow on a UAV. Then, the low-speed wind tunnel experiments were carried out on a Hex-rotor UAV (D/L = 0.56) with different horizontal velocities to determine the hover performance. Finally, numerical simulations were obtained with the streamline distributions, pressure distributions, velocity contour, and vortex distributions at different horizontal airflow conditions to describe the aerodynamic interference effect of different horizontal airflows. Combined with the experimental results and numerical simulations results, the horizontal airflow proved to have a significant influence on the aerodynamic performance of the Hex-rotor UAV with an increase in thrust and power. Indeed, the streamlines in the flow field were coupled to each other at the presence of the incoming airflow. Especially when the incoming airflow was larger, the Hex-rotor UAV could properly use low-speed flight to maintain high power loading. Finally, it is inferred that the aerodynamic performance of the Hex-rotor UAV is also related to the movement and deformation of the vortex at the tip of the rotor.
Funder
National Natural Science Foundation of China
China Scholarship Council
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献