Copper Nanoparticles Coupled with Fine-Powdered Active Carbon-Modified Ceramic Membranes for Improved Filtration Performance in a Membrane Bioreactor

Author:

Qiu Qi12,Gao Mingchang2,Shao Changtao3,Sun Shaofang4,Liu Yusen5,Zhang Huawei1

Affiliation:

1. School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China

2. School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China

3. Shandong Industrial Ceramics Research and Design Institute, Zibo 255031, China

4. School of Civil Engineering and Architecture, University of Jinan, Jinan 250022, China

5. Bureau of Housing and Urban-Rural Development of Laixi, Qingdao 266520, China

Abstract

Membrane fouling is a key factor limiting the application of a membrane bioreactor (MBR), and membrane-surface modification holds the potential to control membrane fouling and solves this problem. In the research, novel nanocomposite membranes were designed and fabricated using antimicrobial copper nanoparticles (CuNPs) coupled with powdered active carbon (PAC) to mitigate membrane fouling. The successful coating was confirmed by SEM, XRD, and FTIR analysis. Compared with a pristine membrane, the functionalization of CuNPs and PAC improved the hydrophilicity of the modified membrane but led to a lower permeate flux. The result of antimicrobial adhesion experiments showed that the modified M-CuOC displayed high antibacterial activity with the bacteria count decreased by 72%. In MBR operation, the modified M-CuOC leads to the removal efficiency of chemical oxygen demand (COD) increasing to 93%, with better filtration performance under a lower TMP rise. The fouling-resistance analysis demonstrated that, although the intrinsic membrane resistance of modified M-CuOC slightly increased, the reversible and irreversible fouling resistances obviously decreased by 45% and 90%. Moreover, the membrane flux recovery efficiency of the modified M-CuOC also increased by 35%. Overall, these results indicated that, in addition to an improvement in antifouling performance, the functionalization of CuNPs and PAC also enhanced the membrane flux recovery efficiency, revealing a good antifouling potential in a practical application.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3