Canadian Wetland Inventory using Google Earth Engine: The First Map and Preliminary Results

Author:

Amani Meisam,Mahdavi Sahel,Afshar Majid,Brisco Brian,Huang Weimin,Mohammad Javad Mirzadeh SayyedORCID,White Lori,Banks Sarah,Montgomery Joshua,Hopkinson Christopher

Abstract

Although wetlands provide valuable services to humans and the environment and cover a large portion of Canada, there is currently no Canada-wide wetland inventory based on the specifications defined by the Canadian Wetland Classification System (CWCS). The most practical approach for creating the Canadian Wetland Inventory (CWI) is to develop a remote sensing method feasible for large areas with the potential to be updated within certain time intervals to monitor dynamic wetland landscapes. Thus, this study aimed to create the first Canada-wide wetland inventory using Landsat-8 imagery and innovative image processing techniques available within Google Earth Engine (GEE). For this purpose, a large amount of field samples and approximately 30,000 Landsat-8 surface reflectance images were initially processed using several advanced algorithms within GEE. Then, the random forest (RF) algorithm was applied to classify the entire country. The final step was an original CWI map considering the five wetland classes defined by the CWCS (i.e., bog, fen, marsh, swamp, and shallow water) and providing updated and comprehensive information regarding the location and spatial extent of wetlands in Canada. The map had reasonable accuracy in terms of both visual and statistical analyses considering the large area of country that was classified (9.985 million km2). The overall classification accuracy and the average producer and user accuracies for wetland classes exclusively were 71%, 66%, and 63%, respectively. Additionally, based on the final classification map, it was estimated that 36% of Canada is covered by wetlands.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3